
The Relative Performance of Various Mapping Algorithms is

Independent of Sizable Variances in Run�time Predictions �

Robert Armstrong

Debra Hensgen

Taylor Kidd

Computer Science Department

Naval Postgraduate School

Monterey� CA �����

Abstract

In this paper we study the performance of four map�
ping algorithms� The four algorithms include two na�
ive ones� Opportunistic Load Balancing �OLB�� and
Limited Best Assignment �LBA�� and two intelligent
greedy algorithms� an O�nm� greedy algorithm� and an
O�n�m� greedy algorithm� All of these algorithms� ex�
cept OLB� use expected run�times to assign jobs to ma�
chines� As expected run�times are rarely deterministic
in modern networked and server based systems� we
�rst use experimentation to determine some plausible
run�time distributions� Using these distributions� we
next execute simulations to determine how the map�
ping algorithms perform� Performance comparisons
show that the greedy algorithms produce schedules that�
when executed� perform better than naive algorithms�
even though the exact run�times are not available to
the schedulers� We conclude that the use of intelligent
mapping algorithms is bene�cial� even when the expec�
ted time for completion of a job is not deterministic�

� Introduction
This paper describes the experiments and simula�

tions that we executed to determine the relative per�
formance of certain mapping algorithms in di�erent
heterogeneous environments� In this paper we assume
that all jobs are independent of one another� That is�
they do not communicate or synchronize with one an�
other� This type of architecture is common in today�s
LAN�based distributed server environment�

Our goal was to determine whether using intelli�
gent mapping algorithms would be bene�cial� even if

�This research was supported by DARPA under contract
number E���� Additional support was provided by the
Naval Postgraduate School and the Institute for Joint Warfare
Analysis�

the jobs did not run for exactly the amount of time
expected� Intelligent mapping algorithms utilize the
expected run�times of each job on each di�erent ma�
chine to attempt to minimize some scalar performance
metric� For our experiments� this metric is the time at
which the last job completes� In particular� we were
concerned about whether it would still be bene�cial
to use intelligent mapping if one or several jobs run
for a substantially di�erent amount of time than ex�
pected� but are still accurately characterized statist�
ically� Because determining a perfect mapping is an
NP�complete problem� we examined the performance
of several di�erent �polynomial� heuristics� The al�
gorithms we chose are listed below�

� A naive O�n� algorithm known as Opportunistic Load
Balancing �OLB�� This algorithm simply places each
job� in order of arrival� on the next available machine�

� A simple O�nm� algorithm known as Limited Best
Assignment �LBA�� This algorithm uses the expected
run�time of each job on each machine� It assigns each
job to the machine on which it has the least expected
run�time� ignoring any other loads on the machines�
including that produced by the jobs that it has as�
signed�

This algorithm� though easily implementable in a
scheduling framework that automatically assigns jobs
to machines� is very similar to the algorithm used by
many users who remotely start their jobs by hand
at supercomputer centers without examining queue
lengths�

� Two greedy algorithms� one of order O�nm� and the
other of order O�n�m�� Both of these algorithms make
use of the expected run�time of each job on each ma�
chine as well as the expected loads on each machine�
These algorithms will be more fully described in Sec�
tion ��

The primary reasons for our study are both that
jobs rarely execute for exactly the expected run�time
and often the expected run�times are not exactly
known� In a system where each job has exclusive use
of a machine� di�erences between actual and predicted
run�times occur either because ��� all of the compute
characteristics 	�
� are not known or enumerated by
the designer of the program� or ��� because the time
to access memory and disk is stochastic and not de�
terministic� Of course� in many environments� addi�
tional non�determinism is due to other jobs running on
the machine or simultaneously using a shared network
or a shared �le server� This paper focuses on those
cases where one or more of the jobs being scheduled
have run�times that could di�er substantially from the
expected run�time� For those cases� we seek to de�
termine whether there is still an advantage to using
an algorithm that makes use of expected run�times or
whether a computationally simpler algorithm that does
not require estimating run�times� such as Opportun�
istic Load Balancing �OLB�� might not yield equival�
ently good performance�

In the next section� we describe the two greedy al�
gorithms that we used in our experiments and simu�
lations� We then describe our experiments concerning
the non�determinism of expected run�times and exam�
ine� using the derived distributions in simulations� the
performance of the intelligent algorithms� That is� we
collect run�times for various jobs on various machines�
analyze their distributions� and extrapolate these dis�
tributions for use in our simulations� We conclude the
paper with a short summary and comparison to related
work�

� The Greedy Algorithms

In addition to the simple OLB and LBA algorithms
described in the previous section� our experiments
used two greedy algorithms� We now describe those
algorithms in detail�

The �rst algorithm is an O�nm� algorithm� where n
is the number of jobs andm is the number of machines�
and the second algorithm is of order O�n�m�� Each
algorithm �rst estimates the expected run�time of each
job on each machine� assuming that if a job cannot
execute on a particular machine� the estimation will be
set to some very large number� As we describe these
algorithms we will consider these expected run�times
as elements of a ��dimensional� n by m matrix called
A� That is� A	i� j� is the expected run�time of job i on
machine j�

The O�nm� algorithm� which� like in the SmartNet
documentation 	
�� we will call Fast Greedy� considers

the jobs in the order requested� � It �rst determines
the value A��j� such that A��j � A��k � k � f���mg� It
then assigns job � to machine j� Following this� it adds
A��j to all Ai�j � i � f���ng� Then� for each remaining
job� p � f���mg� it determines the value Ap�j � such
that Ap�j � Ap�k � k � f���mg� It then assigns job p to
machine j� Following this� it adds Ap�j to all Ai�j � i �
fp� ���ng� At each step� then� it is assigning each job
to its best machine� given the previous assignments�
We note that the jobs are assigned in the order in which
they were requested�

The O�n�m� algorithm� which again borrowing
from SmartNet nomenclature we call simply Greedy�
actually computes two mappings using two di�erent
sub�algorithms and then chooses the mapping that
gives the smallest sum of the predicted run�times� min�
imized over all machines� The two sub�algorithms are
similar to the �rst greedy algorithm above� di�ering
only in the order in which they assign jobs to machines�
We �rst enumerate the steps of the �rst sub�algorithm�

�� Initialize the set fRemainingJobsg to contain all jobs�

�� � i � fRemainingJobsg� �nd Ai�j � Ai�k � k �
fMachinesg� Call such an Ai�j � Ai�mini �

�� Determine p such that Ap�minp � Ai�mini � i �
fRemainingJobsg�

	� Remove p from fRemainingJobsg� scheduling job p

on machine minp�

� Add Ap�minp to Ai�minp � i � fRemainingJobsg�

�� If fRemainingJobsg is not empty� return to step ��

The idea behind this �rst sub�algorithm is that� at
each step� we attempt to minimize the time at which
the last job� which has been thus far scheduled� �n�
ishes�

The second sub�algorithm di�ers from the �rst sub�
algorithm in that� at the third step� it �nds p such
that Ap�minp

� Ai�mini
� i � fRemainingJobsg� This

algorithm� then tries to minimize the worst case time
at each step�

� E�ect of Non�Determinism on Al�
gorithm Performance

We now examine the e�ect of non�determinism on
the performance of the greedy and LBA algorithms
that we described above� Our reason for studying this

�In describing these algorithms� we use the term order re�

quested to mean the order in which the job requests have been
placed prior to invocation of the algorithm� We also investig�
ated the performance of these algorithms if jobs are �rst sorted
before these algorithms are invoked�

is because both the LBA and the greedy algorithms use
the expected run�time to produce their mappings� One
of our major motivations for this work is to determ�
ine whether such intelligent algorithms are still useful if
the actual run�time is non�deterministic� that is� essen�
tially sampled from a distribution around the expected
run�time� In order to determine what distributions we
should sample our run�times from in our simulation�
we �rst conducted some experiments with actual pro�
grams to try to determine what types of distributions
characterize their run�times�

��� Job Run�time Distributions

We have already explained why job�machine run�
times are typically not constant� but rather vary ac�
cording to some distribution� To test the performance
of our algorithms� it is essential to draw samples of
the run�times of jobs from a particular distribution�
but �rst we need to determine some realistic distribu�
tions that we can use in our simulations� Therefore�
we repeatedly executed some parallel and sequential
programs� gathered run�time statistics� and analyzed
them�

We performed several experiments using the NAS
Benchmarks 	��� These benchmarks were used to de�
termine the types of run�time distributions that may
be typical for at least some jobs on some machines�
We needed to determine sample parameters for these
run�time distributions so that they could be repro�
duced by our simulator� While performing our tests�
we controlled the following environmental character�
istics� server location� network and server load� num�
ber of processors� amount of memory� and processor
speed� Table � summarizes the con�gurations of our
machines caesar and elvis upon which we ran our
experiments�

caesar elvis

Type SGI Challenge L Onyx
Proc Speed �MHz� �

 ��

Proc Type �MIPS� R��

 R��

� of Processors � �
Memory �Mbytes�
� ���
Secondary Uni�ed

Cache � Mb � Mb

Table �� Con�guration of SGI machines caesar and
elvis� both running IRIX�	 v����

The jobs that we used throughout these experiments
were from two sources� NASA�s reference implement�
ation for some of the NAS Benchmarks� and our own

implementations of other NAS Benchmarks that met
the required criteria� Four of the experiments use some
version of the NAS Integer Sort �IS� Benchmark� im�
plemented either in parallel on four processors� or in
single processor mode� Two other experiments used
the NAS Embarrassingly Parallel �EP� Benchmark run
on a single processor� We now explain our experiments
and their results�

����� Integer Sort� Executed on Four Pro�

cessors

This experiment examined the run�time distribution of
a version of the NAS Integer Sort Benchmark executed
on four processors� We implemented the integer sort
using a counting sort 	�� pages �������� algorithm� We
used Silicon Graphic�s light weight process �thread�
support functions� including mfork��� to implement
our version of this benchmark�

We ran this sort across a heavily loaded network�
obtaining both the executable and the data from a �le
server that was also heavily loaded� When run on
caesar� the run�time distribution� for �

 executions�
appears Gaussian�� Figure � shows a histogram of this
distribution� When run on elvis� the run�time distri�
bution� again for �

 executions� appears exponential
and is shown in Figure �� We note that the origin
of the exponential distribution shown in Figure � is
translated to approximately ��
� That means that the
sort had to run for at least ��
 seconds before stopping�
The distribution that we see very closely matches an
exponential distribution with a mean of around
��
�
translated ��
 seconds to the right� We expect that
many jobs would have a distribution similar to this�
because all jobs must run at least some amount of
time��

In these experiments� we also see that memory size�
and so� the need to swap to local disk� can have a
de�nite e�ect upon the run�time distribution of a job�
The integer sort on elvis completes� on average� �
�
sooner than the same job on caesar� We note that� in
this case� the amount of memory has more in�uence

�The form of the distributions were determined by carefully
selecting the bin size and then curve �tting� The authors are
familar with both visual and analytical tests for normality� but
analytical tests were not used given the strong visual similarity
of the frequency plots to that of a Normal curve� �The fact that
some sample point frequencies lie above and below the selected
Normal distribution is due to the number of samples being �nite�
Such phenomena would have appeared even if �		 data points
had been sampled from a known Normal run�time distribution�

�An exponential distribution is de�ned to start at 	�	� If
applied� without translation� in this case� that would mean there
is a strong possibility of near�zero run�times�

0

2

4

6

8

10

12

14

16

8.8 8.9 9 9.1 9.2 9.3 9.4

F
re

q
u
e
n
c
y

Run-time, seconds

Parallel Counting Sort on Caesar

100 Samples

Loaded network

Mean: 9.093

Sigma: 0.0983

"fcaesar.dat"

Figure �� Forked counting sort� caesar�

0

10

20

30

40

50

60

70

80

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

F
re

q
u
e
n
c
y

Run-time, seconds

Parallel Counting Sort on Elvis

100 Samples

Loaded network

Mean: 3.04

Sigma: 0.234

"felvis.dat"

Figure �� Forked counting sort� elvis�

on the run�time of the job than does the speed of the
processor� Of primary importance� however� is the ob�
servation indicating that the same job� running on two
di�erent machines� not only has di�erent mean run�
times� but the distribution of run�times is di�erent�
yielding a Gaussian�like distribution on one machine
and an exponential�like distribution on the other�

����� Integer Sort� Single Processor

This experiment is the same as that discussed in the
last section� with the exception of being run on a single
processor instead of being distributed across four pro�
cessors� Although a slightly di�erent C�� implement�
ation was used� we again based our program on the
counting sort�

When the integer sort was run on caesar and
elvis� the run�time distribution was not easily char�
acterized� however� it appears related to a Gaussian
distribution� Histograms of the distributions� sim�
ilar to that shown in Figure �� are possibly multi�
modal� which indicates that multiple distributions may
be present� While this experiment does not provide
us with de�nitive results� it does point to the fact that
run�time distributions can be quite complex� We sus�
pect that these conditions are related to changes in the
network and server loads�

0

5

10

15

20

7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8 8.1

F
re

q
u
e
n
c
y

Run-time, seconds

Counting Sort on Caesar, Single Processor

100 Samples

Loaded network

Mean: 7.642

Sigma: 0.723

"scaesar.dat"

Figure �� Counting sort� caesar� single processor�

Once again� this set of experiments showed us that
additional memory can greatly enhance run�time per�
formance� The tests on elvis ran � times faster than
those run on caesar� which has the faster processors�
The tests also show that run�time distributions can be
very complex� and may be di�cult to reproduce in a
simulation� Although our simulations did not use such
complex distributions� they should be modeled in fu�
ture work�

0

5

10

15

20

25

30

0.885 0.89 0.895 0.9 0.905 0.91 0.915 0.92 0.925 0.93 0.935

F
re

q
u
e
n
c
y

Run-time, seconds

Counting Sort on Elvis, Single Processor

100 Samples

Loaded network

Mean: 1.053

Sigma: 0.0988

"selvis.dat"

Figure �� Counting sort� elvis� single processor�

����� Embarrassingly Parallel NAS Bench�

mark

The next set of experiments that we describe com�
pared the run�time distributions of compute intens�
ive jobs run from local disk to those run across the
network from a �le server� The tests that we de�
scribe in this section were executed only on caesar be�
cause elvis did not have a su�ciently large local disk
available� We used the reference implementation 	���
from NASA� of the NAS Embarrassingly Parallel �EP�
Benchmark� This implementation uses the portable
Message Passing Interface �MPI� 	��� to parallelize the
code� The tests we ran� however� were compiled to be
executed on a single processor� � The EP Benchmark
was run �

 times for each test� See Figures � and
�

��� Simulation Experiments

We now describe our simulation experiments that
are aimed at examining how well the mapping al�
gorithms performed when the jobs scheduled did not
execute for exactly the mean run�time� The matrices
that we refer to in the description below have rows in�
dexed by the job and columns indexed by the machine�

� Matrix Format� We used di�erent matrices contain�
ing jobs and machines of varying characteristics� Each
matrix contained mean run�times for each of �ve dif�
ferent jobs on each of ten di�erent machines� The av�
erage means of the corresponding columns and rows

�The MPI mechanism is still utilized in the EP Benchmark
when it is compiled for a single processor�

0

10

20

30

40

50

60

70

80

740 745 750 755 760 765 770 775 780

F
re

q
u
e
n
c
y

Run-time, seconds

epA1 NAS Benchmark on Caesar

100 Samples

Code on Machine; no network involved

Mean: 743.72

Sigma: 1.57

"epA1-caesar.dat"

Figure �� epA� NAS Benchmark� with executable residing
on local disk�

0

5

10

15

20

25

30

35

742 743 744 745 746 747 748 749

F
re

q
u
e
n
c
y

Run-time, seconds

epA1 NAS Benchmark on Caesar

100 Samples

Run over network

Mean: 743.717

Sigma: 1.568

"epA1-aquarius.dat"

Figure
� epA� NAS Benchmark� �les obtained over a
lightly loaded network�

were the same for all matrices and the jobs themselves
were quite heterogeneous�

� Job Request Sets� In order to obtain di�erent results
for each matrix� we generated two random sequences
of ��
 job requests� which we will call ����� and
������ where each individual request was chosen ac�
cording to a uniform random distribution from among
�ve di�erent jobs� We also generated two more ran�

dom sets� this time of

 job requests� calling them
����� and ������ We did this to look at perform�
ance variations between job request orderings� as well
as to examine any performance di�erences that might
occur because fewer or more jobs were requested�

� Job Request Format� We generated each of the

jobs� for each request� at random� Thus� in these ex�
periments� the jobs were requested in random order�
This was done because the order of job request af�
fects the schedule� The Fast Greedy Algorithm maps
and schedules the jobs on machines in the order in
which they are submitted� The Greedy Algorithm
uses the order to break ties� We chose to execute
these randomly ordered requests both because they
more closely mimic a real environment where di�er�
ent jobs are submitted by di�erent users and because
we wished to examine whether these algorithms per�
formed better or worse when unsorted� as opposed to
sorted� requests were submitted�

� Run�time Generation for Simulations� We executed
each simulation �
 times� In each run� a di�erent
value was used to seed the random number generator
that was used to generate the simulated �actual� run�
time duration� The total time required to execute each
schedule was summed and the average was computed�
Multiple seeds were used to ensure that our results
were not skewed��

� Baseline Calculations� In addition to simulations
where we generated simulated run�times from particu�
lar distributions� we performed some baseline calcu�

lations� These baseline calculations provided results
that were� in e�ect� equivalent to running the simula�
tion where the run�time of a job on a given machine
was always exactly its expected run�time�

� Actual Run�time Distributions� When we generated
run�times that were di�erent from the mean predicted
run�times� we ran experiments for both Gaussian and
exponential distributions� Based upon our experi�
ments with the NAS IS and EP Benchmarks above�
we chose to implement a translated exponential dis�
tribution�

Again� based upon our earlier experiments described
in Section ���� we chose to use a truncated Gaussian
distribution in our simulation experiments to mimic
the Gamma distribution that best �t our data� We
chose to truncate left of the mean at � � ��

��� Results of Simulation Experiments
where Jobs Ran for Times Di�erent
from the Predicted Run�times

This set of experiments examined the performance
of intelligent mapping algorithms when job run�times

�This is a common method to reduce the in�uence of a single
random number generation sequence that may be biased�

di�ered from the expected run�times that were used to
develop the mappings� Using the distributions identi�
�ed in the previous experiments� we instantiated spe�
ci�c parameters in order to simulate some typical jobs�
We simulated jobs with both exponential and trun�
cated Gaussian run�time distributions� In this pa�
per we summarize results� individual results from ad�
ditional individual experiments� which are consistent
with the conclusions that we make in this paper� can
be found in Armstrong�s thesis 	���

The graphs in this section compare the �nal com�
pletion times of the jobs under the various mappings�
We use the label Baseline to mean that the value rep�
resented would be the completion time if all of the
jobs ran for exactly their predicted mean run�times�
In order to emphasize the di�erences between the val�
ues that we plot in the graph� we do not include the
OLB run�times� The OLB run�times� for the expo�
nential and Gaussian distribution simulations that we
discuss below� averaged around �
�

 seconds in all
cases shown� i�e�� �

 requests�

����� Exponential Distribution Experiments

The results of these experiments compare the perform�
ance of the various mapping algorithms when all jobs
have an exponential run�time distribution� We re�
call that the sample run�times from those experiments
closely �t a shifted exponential distribution with mean
of ��
�

lba
greedy

fast greedy
0

1

2

3

4

T
h

o
u

s
a

n
d

s
R

u
n

-t
im

e
 i
n

 s
e

c
o

n
d

s

Baseline
Exponential

Submission Sequence
500-4

Figure �� Exponential run�time distribution results�
�

���

We now compare the time at which the last job �n�
ishes if executed according to each of the mappings�
assuming that a job is not started on a machine until
the last job completes� The �gures in this section show
both the expected completion time assuming determ�
inistic run�times as well as under the assumption that
the run�times are exponentially distributed� shifted to
the right such that its mean matches the expected run�
time�

Figure � shows these comparisons for some matrices
that we used in our simulations� This �gure shows
that the schedules built by the intelligent mapping
algorithms are still e�ective even though the actual
run�time of a given job on a given machine can di�er
greatly from its expected run�time�

����� Truncated Gaussian Experiments

We then performed additional simulations to exam�
ine the performance of the the intelligent mapping al�
gorithms when all jobs had approximately Gamma
run�time distributions� We determined from our ex�
periments that we could approximate such a distribu�
tion by truncating a Gaussian distribution to the left
of the mean at roughly �� �� Throughout this exper�
iment� the mean� �� was the expected run�time for the
individual job�machine pair� and �� was set to �

�
of �� Therefore� these experiments are useful in de�
termining whether� when the variance is very large for
all jobs� the greedy algorithms still performed much
better than both the LBA and OLB algorithms� No
negative run�times were generated in our experiments
because the truncation value was always positive�

The results in Figure � show that the schedules are
�nishing up to ��� later than in the previous exper�
iments� This not unexpected� as truncation will shift
the mean of the resulting distribution to the right� In
the next section we provide a theoretical discussion as
to why we would expect the times to be at least �
�
later� The results also show that the greedy algorithms
still perform better than the OLB and LBA algorithms
when job run�time distributions are truncated Gaus�
sian with very large variances� Our experiments� and
the theoretical explanation below� imply that it may
be worthwhile to update the mapping as the jobs are
being executed� to minimize the e�ect of the large job
variances�

lba greedy fast greedy
0

1

2

3

4

5

T
h

o
u

s
a

n
d

s
R

u
n

-t
im

e
 i
n

 s
e

c
o

n
d

s

Baseline
T-Gaussian

Submission Sequence
500-3

Figure �� Truncated Gaussian run�time distribution
results� �

���

����� Theoretical Explanation for Longer

Run�times shown in Gaussian Experi�

ments

To theoretically predict the new mean of the truncated
distribution described in the last section� we can use
simple Gaussian statistics 	��� Without loss of general�
ity� our explanation uses a standard Gaussian distribu�
tion with a mean of
 and a standard deviation of �� If
A�z�� is the area under the distribution from the mean�
z �
� to z � z�� then it can be easily shown that the
new mean� �new� for our truncated distribution is

�new � A��
�
���A���

�

�
���

Using this� we see that the new mean should be �new �
��
��

Unfortunately� the truncation of the Gaussian dis�
tribution only accounts for a �
� increase in the mean�
Therefore� this explanation alone leaves some �� un�
accounted for� The remaining �� is due to two factors�
The �rst can be traced to the fact that we are using a
truncated Gaussian instead of a Gamma distribution�
The second is the fact that the expected value of the
maximum of several Gaussian distributions is not the
maximum of the expected values� The application of
this well�known probability result to quality of service
metrics is documented elsewhere 	���

����� Comparison of the Two Greedy Al�

gorithms

We note that in our results� presented both here and
in Armstrong�s thesis� the Greedy and Fast Greedy
algorithms appeared to perform similarly� Over all of
our experiments we only saw the Greedy Algorithm
performing up to ��� better than the Fast Greedy Al�
gorithm� Other work has suggested that the improve�
ment should be much higher� However� the other work�
to our knowledge� was based upon presenting sorted
requests to these mapping algorithms� The theoretical
explanation for these results is beyond the scope of this
paper and is discussed in another paper 	���

� Related Work
To our knowledge� no one else has studied the

performance of intelligent heterogeneous mapping
algorithms when the run�times of jobs are non�
deterministic� by using the distributions of run�times
for actual programs determined under di�erent re�
source loadings�

Ibarra and Kim 	�� were the �rst to study the
performance of the algorithms upon which we con�
centrated� Their analytical study centered around
determining the worst�case performance of the al�
gorithms� Weissman 	��� used simulation to study
interference�based policies� that is� policies that take
into account the fact that as you increase the load on
any shared resource� the rate of execution of other jobs
decreases� Our policies� and simulations� assumed that
the jobs were executed on a �rst�come� �rst�served
basis� Although we did not study their performance
here� genetic algorithms have been proposed as a good
way to schedule tasks on heterogeneous resources� par�
ticularly when communication or synchronization is
needed between tasks 	���� 	���� Many systems have
followed the lead of SmartNet 	
� in implementing in�
telligent schedulers� such as those we describe here� in
their resource management systems 	���� 	��� 	�
��

� Summary
In this paper� we experimented with several applica�

tions on resources with di�ering loads and �tted their
run�times to distributions� We then used these dis�
tributions to determine via simulation whether� when
the run�times are non�deterministic� it is still bene��
cial to use intelligent algorithms that make use of the
expected run�times to compute a mapping� We found
that it continues to be bene�cial even when the expec�
ted run�time distributions have large variances� As
the distributions in our simulations were derived from
the execution of actual programs� our distributions are
realistic� However� there are additional distributions

that are also realistic that we have not yet examined�
We intend to pursue these in future work�

References
	�� Alder� H� L�� and Roessler� E� B� Introduc�

tion to Probability and Statistics� third ed� Free�
man� London� England� ��
��

	�� Armstrong� R� K� Investigation of E�ect of
Di�erent Run�time Distributions on SmartNet
Performance� Master�s thesis� U�S� Naval Post�
graduate School� September �����

	�� Bailey� D�� et al� The NAS Parallel Bench�
marks ��
� Tech� Rep� NAS����
�
� NASA Ames
Research Center� December �����

	�� Beguelin� A�� et al� HeNCE� A User� Guide�
Oak Ridge National Laboratory and University of
Tennessee� December ����� The document itself
is available on the web at cs�utk�edu�

	�� Cormen� T� H�� Leiserson� C� E�� and
Rivest� R� L� Introduction to Algorithms� The
MIT Press� Cambridge� Massachusetts� ���
�

	
� Freund� R�� Kidd� T�� Hensgen� D�� and
Moore� L� Smartnet� A Scheduling Frame�
work for Heterogeneous Computing� Proceedings
of the International Symposium on Parallel Ar�
chitectures� Algorithms and Networks ����
��

	�� Hensgen� D�� Kidd� T�� and Armstrong� R�
Comparison of greedy algorithms for scheduling
jobs in a heterogeneous environments� In pro�
gress�

	�� Ibarra� and Kim� Heuristic Algorithms for
Scheduling Independent Tasks on Nonidentical
Processors� Journal of the ACM �������

	�� Kidd� T�� and Hensgen� D� Why the mean is
inadequate for accurate scheduling decisions� In
progress�

	�
� Kidd� T�� Hensgen� D�� Freund� R�� Kus�
sow� M�� and Campbell� M� Compute Char�
acteristics� A Useful Characterization of Job
Runtimes� In preparation for submission �������

	��� Neuman� B� C�� and Rao� S� The Prospero Re�
source Manager� A Scalable Framework for Pro�
cessor Allocation in Distributed Systems� Con�
currency� Practice and Experience �������

	��� Pacheco� P� A User�s Guide to MPI� Tech�
rep�� Department of Mathematics� University of
San Francisco� March �����

	��� Singh� H�� and Youssef� A� Mapping and
Scheduling Heterogeneous Task Graphs using Ge�
netic Algorithms� Proceedings of the Heterogen�
eous Computing Workshop ����
��

	��� Wang� L�� Siegel� H� J�� and Roychow�
dhury� V� P� A Genetic�Algorithm�Based Ap�
proach for Task Matching and Scheduling in Het�
erogeneous Computing Environments� Proceed�
ings of the Heterogeneous Computing Workshop
����
��

	��� Weissman� J� B� The Interference Paradigm for
Network Job Scheduling� Proceedings of the Het�
erogeneous Computing Workshop ����
��

	�
� Zhou� Zheng� Wang� and Delisle� Utopia�
A load sharing facility for lage heterogeneous dis�
tributed computer systems� Software� Practice
and Experience �������

Biographies

Major Robert K� Armstrong is currently in
charge of the Modeling and Simulation Laboratory
for the Marine Corps Air Ground Combat Center�
Twentynine Palms� California� He received his BS in
Engineering from the United States Naval Academy in
����� is a graduate of the Amphibious Warfare School
in Quantico� Virginia� and has earned an MS in Com�
puter Science from the Naval Postgraduate School�
Monterey� California in ����� Major Armstrong has
served in the capacity of Artillery O�cer with the
�st Marine Division in Korea� Somalia� and Kuwait�
His interests include computer architecture� distrib�
uted systems� and modeling and simulation for train�
ing�

Debra Hensgen received her Ph�D� in Computer
Science� in the area of Distributed Operating Systems
from the University of Kentucky in ����� She is cur�
rently an Associate Professor of Computer Science at
the Naval Postgraduate School in Monterey� Califor�
nia� She moved to Monterey from the University of
Cincinnati three years ago where she was �rst appoin�
ted as an Assistant Professor and then a tenured Asso�
ciate Professor of Electrical and Computer Engineer�
ing� Her research interests include resource manage�
ment and allocation systems and tools for concurrent
programming� She has authored numerous papers in
these areas� She is currently a Subject Area Editor
for the Journal of Parallel and Distributed Computing
and is the chief architect and a co�Principal Investig�
ator for the DARPA�funded MSHN project which is
part of DARPA�s larger QUORUM program�

Taylor Kidd is an Associate Professor of Com�
puter Science at the Naval Postgraduate School �NPS�
in Monterey� California� He received his Ph�D� in Elec�
trical and Computer Engineering from the University
of California at San Diego �UCSD� in ����� He re�
ceived his MS and BS� also in Electrical and Computer

Engineering� from UCSD in ���
 and ���� respect�
ively� Prior to accepting a position at the NPS� he was
a researcher at the Navy�s NRaD laboratory in San
Diego� California� His current interests include dis�
tributed computing and the application of stochastic
�ltering and estimation theory to distributed systems�
He is a co�Principal Investigator� along with Debra
Hensgen� for the DARPA�funded MSHN project which
is part of DARPA�s larger QUORUM program�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

